

Energy-Efficient Dynamic and Spatiotemporal Spectrum Access via Spiking Reservoir Computing

Nima Mohammadi, Lingjia Liu, Yifei Song, Yang Yi

Abstract

- computing-based Neuromorphic energyefficient reinforcement learning for spectrum access
- Spiking neural networks (SNNs), liquid state machines, are adopted for energy efficiency
- Homeostatic regulation maintains nearchaotic reservoir dynamics for robustness.
- Numerical results show superior performance over existing models in throughput and power consumption.

Motivation

- Energy and compute constraints of IoT devices makes it difficult to deploy conventional DRL (DQN/DRQN/DEQN) strategies.
- Goal: energy-efficient opportunistic access in partially observable wireless environments

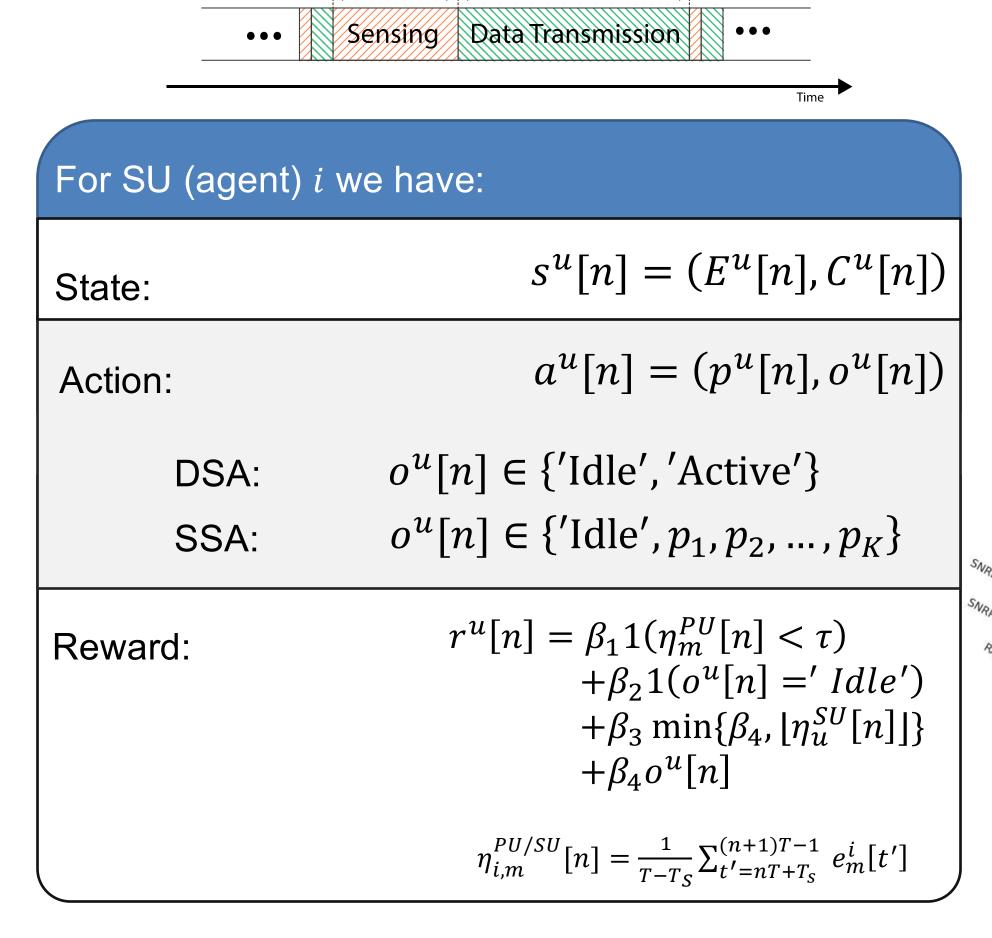
Key Contributions

- SNRPG: fully-spiking reservoir policy-gradient RL for spectrum access
- Liquid state machine (LSM) reservoir with small-world topology plus P-CRITICAL homeostasis for near-critical dynamics
- Outperforms DRQN/DEQN on PU/SU throughput;
- ~60x lower inference energy vs ANN baseline.

Method: SNRPG

- Architecture: LSM reservoir of spiking neurons → feed-forward spiking readout
- Reservoir: Small-world connectivity (high clustering, short paths) for rich fading memory
- Homeostasis: P-CRITICAL nudges branching factor $\bar{\eta} \lesssim 1$ (near-chaotic regime)
- Training: Surrogate-gradient on readout; eventdriven sparse spiking for energy savings.

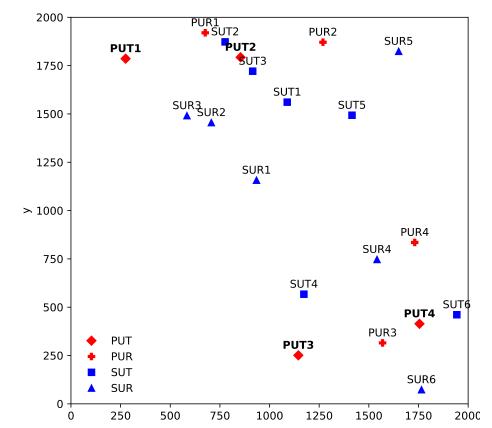
RL Formulation



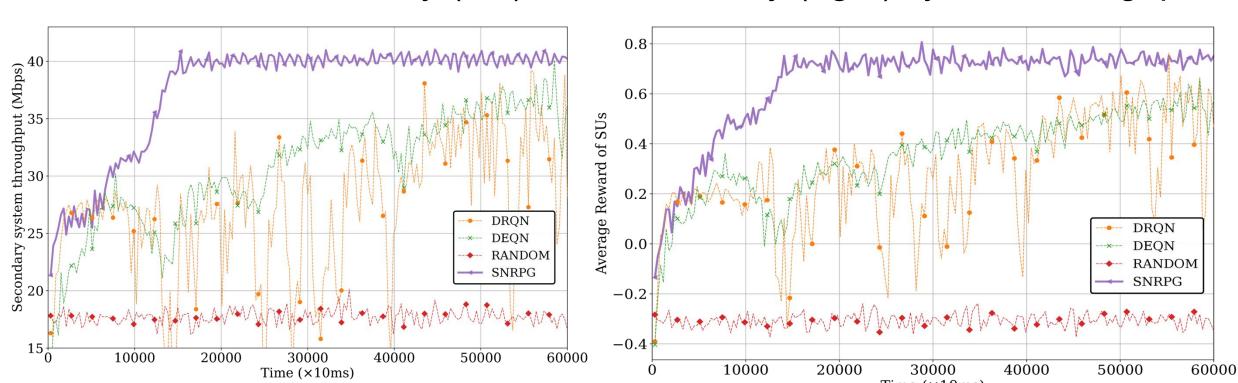
- Reward combines (i) PU protection, (ii) discourage idling, (iii) SU spectral efficiency (capped), and (iv) power penalty
- Training: online with replay

Simulation Results

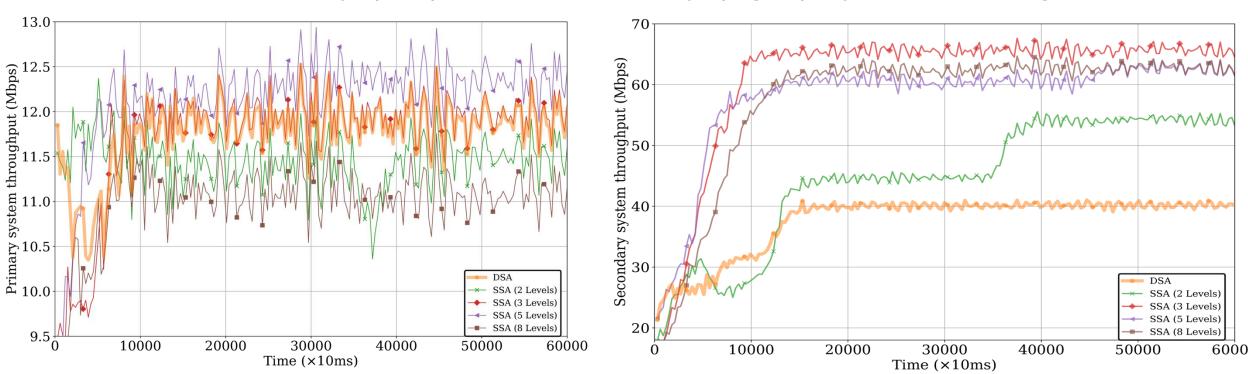
Parameter	Value
Number of PUs	4
Number of SUs	6
Simulation area	$2000 \text{m} \times 2000 \text{m}$
Channel bandwidths	5MHz
Duration of each time slot	1 ms
Sensing duration T_{sen}	2 time slots
PUT/PUR links	4
PUT/SUR interference links	24
PU Tx Power	500 mW
SU Tx Power (DSA)	500 mW
SU Tx Power (SSA)	[50, 500] mW
Variance of Gaussian noise	-157.3 dBm
Sensing/transmission period	10 time slots
PUT/SUT sensing links	24
SUT/SUR links	36
SUT/PUR interference links	24



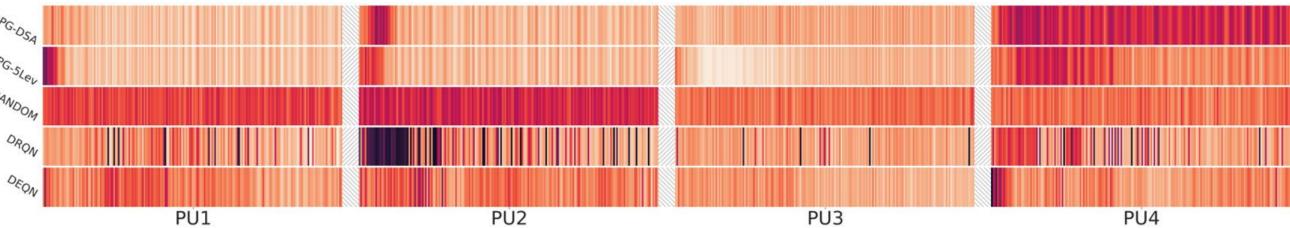
SNRPG vs SOTA: Primary (left) and Secondary (right) system throughputs:



DSA vs SSA: Primary (left) and Secondary (right) system throughputs:



Emitted PU warnings:



Energy-efficiency: Calculating E_{ANN}/E_{SNN} as $E_{MAC}/(E_{AC} \times A \times T)$ with T = 10, $E_{MAC} = 3.2$ pJ and $E_{AC} = 0.1$ pJ implies ~60 times improvement.

References

- Chang, H.H., Liu, L. and Yi, Y., 2020. Deep echo state Q-network (DEQN) and its application in dynamic spectrum sharing for 5G and beyond. IEEE Transactions on Neural Networks and Learning Systems.
- Panda P, Aketi SA, Roy K. Toward scalable, efficient, and accurate deep spiking neural networks with backward residual connections, stochastic softmax, and hybridization. Frontiers in Neuroscience. 2020 Jun 30;14:653.